The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 0 X^3+X^2 0 X^3+X^2 0 X^3 X^3+X^2 X^2 X^3 0 0 X^3 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 X^3 X^3 X^3 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 0 X^3 0 0 generates a code of length 25 over Z2[X]/(X^4) who´s minimum homogenous weight is 24. Homogenous weight enumerator: w(x)=1x^0+78x^24+128x^25+32x^26+16x^28+1x^48 The gray image is a linear code over GF(2) with n=200, k=8 and d=96. As d=98 is an upper bound for linear (200,8,2)-codes, this code is optimal over Z2[X]/(X^4) for dimension 8. This code was found by Heurico 1.16 in 0.047 seconds.